636

The Addition Effect of CH3I on the Ignition of CH4

Kazuo Takahashi, Tadaaki Inomata,* Takao Moriwaki, and Satiko Okazaki Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo 102 (Received August 3, 1988)

Synopsis. Measurements and calculations of ignition delay times were performed in a mixture of CH₄-CH₃I-O₂-Ar in order to understand the characteristics of compouds including iodine during ignition. CH₃I accelerated the ignition of CH₄ more than CH₃Cl did, but less than CH₃Br did. The remarkably small bond-dissociation energies of CH₃I and HI, in comparison to these of other halomethanes, were the major cause of the characteristic behavior.

It is well-known that CH₄ is very difficult to ignite in relatively simple hydrocarbons and that all additives but permanent gases, which act only as diluents, promote the ignition.¹⁻⁸⁾ The addition effects of CH₃Br and CH₃Cl⁸⁾ on the ignition of CH₄ have already been analyzed in experiments using shock tubes and by simulations based on an assumed reaction mechanism. CH₃Br was more effective as an ignition-promotor than CH₃Cl, although both of them promoted the ignition; the differences were accounted for by chemical kinetic reasons.

In this study, the addition effect of CH₃I on the ignition of CH₄ is investigated by the same method, and the action due to the difference in halogens is discussed.

Experimental

The ignition-delay times were measured in a mixture of CH_4 (2.0 mol%)- O_2 (4.0 mol%)- CH_3I (0.1 mol%)-Ar (93.9 mol%) at temperatures between 1500 and 2000 K and at pressures between 2.3 and 3.3 atm behind the shock wave. Analytical studies were performed by using the mechanism shown in Table 1, in addition to that of the CH_4 -oxidation. The details of the experiments and calculation are given in Ref.8. The measurements included an error of only a few %; the error due to the procedure of estimating the ignition-delay times was below 1 μ s at 1800 K.

Results and Discussion

The measured ignition-delay times agree well with

the calculated values (Fig.1). The promotion effect of CH_3I is larger than that of CH_3Cl , but somewhat smaller than that of CH_3Br . Table 1 includes ignition-delay times which calculated by simultaneously decreasing both forward and reverse rate constants concerning halogen species, one by one, to zero or to one-tenth of their both values at 1800 K. The time calculated by means of normal rate constants was 124 μs . The results indicate that the reactions which have large effects on the ignition are $R1_I$, $R4_I$, $R5_I$, and $R8_I$ (hereafter, a subscript will express the kind of halogen

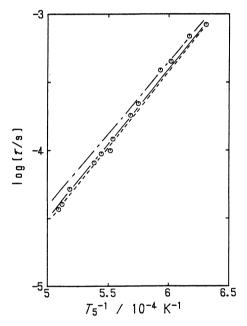


Fig. 1. Measured and calculated ignition delay times in CH₄-CH₃I-O₂-Ar. *T*₅ is temperature behind shock wave.

O: measured in CH_3I , —: calculated in CH_3I , ---: calculated in $CH_3Cl.$ ⁸⁾

Table 1. Reaction Mechanism, Rate Constants, and Calculated Ignition-Delay Times at 1800 K

	Reaction ^{a)}	Ignition-delay time/10 ⁻⁶ s		k ^{b)}			
	Keaction*	$k\times 0$	k×0.1	$\overline{\log A}$	n	E	Ref.
Rl	CH ₃ I=CH ₃ +I	213	126	13.40	0.00	54.70	10
R2	$CH_3I+H=CH_3+HI$	125	126	14.54	0.00	4.50	9
R3	$CH_3I+I=CH_3+I_2$	125	125	14.30	0.00	19.80	9
R4	$CH_4+I=CH_3+HI$	143	139	14.70	0.00	33.90	9
	$HI + H = H_2 + I$	122	123	13.52	0.00	0.00	9
	$I_2+H=HI+I$	124	125	14.39	0.00	0.00	9
R7	$I+I+M=I_2+M$	125	126	13.00	1.00	0.00	9
R8	I+H+M=HI+M	138	136	13.08	1.00	0.00	9

a) Reaction in which both forward and reverse rate constants are changed. The ignition-delay time calculated by the normal rate constants is 124 μ s. b) Forward rate constants in the form $A \times T^n \exp(-E/RT)$, in cm⁻³, mol, s, kcal, and K units.

in the corresponding reaction).

Although the thermal-decomposition reaction, R1₁, contributes most to the acceleration of an ignition like those of CH₃Cl and CH₃Br, each situation is different. When the forward and reverse rate constants of thermal decomposition, R1_{Br} or R1_{Cl}, are changed by 10% in systems including CH₃Br or CH₃Cl, the ignition delay time changes a small percentage, but it does not change at all in this case, and it only decreases about 1% with one-tenth of the R1_L. On the other hand, when both rate constants of thermal decomposition (R1) are zero, the ignition delay times are similar

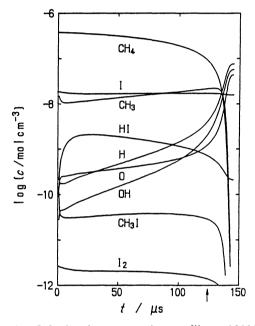


Fig. 2. Calculated concentration profiles at 1800 K. t is time after the arrival of shock wave. Arrow indicates the ignition-delay time.

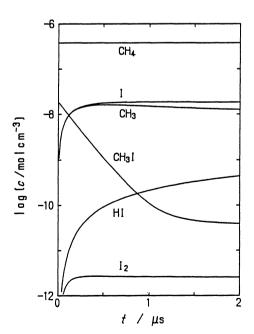


Fig. 3. Calculated concentration profiles at 1800 Kin early stage of induction period.

(about 220 μ s) in the three halomethanes. The forward rate constant of R1_I is two orders of magnitude larger than those of R1_{Br} and R1_{Cl}, so the greater part of the CH₃I is decomposed in the early stage of the induction period, as is shown in Figs. 2 and 3. This means that the decomposition rate of CH₃I is very fast and that a small change in the decomposition rate does not affect the ignition-delay time.

The concentration profiles (Fig. 3) in the early stages of the induction period indicate that CH3, which is important in ignition, is generated from CH₃I, but not from CH₄. The concentration of iodine atoms reaches its maximum value 0.5 µs after the arrival of a shock wave and is the same as the decomposition value of CH₃I. The net reaction rate of Rl₁ is very fast in the early stage of the induction period, but it is about 10⁻⁵ $mol cm^{-3} s^{-1}$ during most of the induction period; this value is smaller by one or two orders than those of Rl Br and Rl_{Cl}. Therefore, Rl_I contributes significantly to the ignition only in the early stage. Since R4_I proceeds in the forward direction and promotes the ignition, R4_I has the possibility of making a chain with R1_I, in which the forward reaction is fast, and with R21, in which the reverse reaction is fast, just as in the case of CH₂Br addition.⁸⁾ However, the change of the forward and reverse rate constants of R21 has no effect on the calculated ignition-delay time (Table 1), and the net rate of Rl₁ is slow through the greater part of the induction period. Therefore, the chain of R1₁, R2₁, and R4_I is impossible. On the other hand, R8_I proceeds in the reverse diretion and promotes the ignition. As a result, R41 forms a chain with R81, and their net reaction corresponds to the production of one H radical and one CH₃ radical from CH₄ in each chain. This net reaction is equivalent to that which is formed by Rl_{Br},

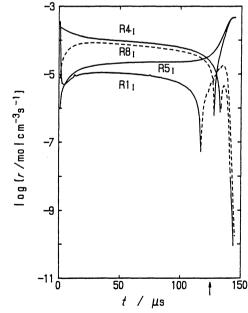


Fig. 4. Net reaction rates. *t* is time after the arrival of shock wave. Solid and dotted lines indicate that net reaction proceeds in the forward direction and in the reverse direction, respectively. Arrow indicates the ignition-delay time.

 $R2_{Br}$, and $R4_{Br}$ when CH_3Br is used. However, the promotion effect of CH_3I is weaker than that of CH_3Br . As is apparent from Fig.4, the net rate of $R4_I$ is nearly equal to the rate of $R8_I$ except for the early stage of the induction period, and the net rates of $R1_{Br}$, $R2_{Br}$, and $R4_{Br}$ previously reported are also equal to each other. However the net rate of $R2_{Br}$ controlling the rate of the chain formed in the CH_4 - CH_3Br system is two times faster than that of $R8_I$ controlling the rate of chain formed when CH_3I is used; consequently, we infer that CH_3Br promotes the ignition better than CH_3I does.

Only $R5_1$ inhibits the ignition in the system involving CH_3I . When $R5_1$ or $R5_{Br}$ is deleted from the reaction mechanism in a system including CH_3I or CH_3Br , the calculated ignition-delay time becomes too short by 2 μs or 5 μs respectively. Although the forward reaction of $R5_1$ is fast and should greatly inhibit ignition, its reverse reaction is also fast, in spite of the low reverse rate constant, because iodine above 90% exists as iodine atoms, as is shown in Fig. 2. Therefore, the net rate of $R5_1$ is lower than that of $R2_1$ and $R8_1$ and has only a little effect on the inhibition of the ignition. In the system involving CH_3Br , the concentration of HBr is about three times that of Br atoms, and the rate

constant of $R5_{Br}$ in the reverse direction is smaller by 2 orders than that in the forward direction, so the net rate of $R5_{Br}$ also becomes slow compared with those of other reactions which have a large effect on the ignition.

References

- 1) R. W. Crossley, E. A. Dorko, K. Scheller, and A. Burcat, Combust. Flame, 19, 373 (1972).
- 2) E. A. Dorko, D. M. Bass, R. W. Crossley, and K. Scheller, *Combust. Flame*, **24**, 173 (1975).
- 3) A. Grillo and M. W. Slack, Combust. Flame, 27, 377 (1976).
- 4) R. Ravikumar and K. A. Bhaskaran, Combust. Flame, 27, 107 (1976).
 - 5) E. K. Dabora, Combust. Flame, 24, 181 (1975).
 - 6) A. Burcat, Combust. Flame, 28, 319 (1977).
- 7) T. Inomata, T. Moriwaki, and S. Okazaki, Combust. Flame, 62, 183 (1985).
- 8) K. Takahashi, T. Inomata, T. Moriwaki, and S. Okazaki, Bull. Chem. Soc. Jpn., 61, 3307 (1988).
- 9) C. K. Westbrook and F. L. Dryer, Proc. Energy Combust. Sci., 10, 1 (1984).
- 10) G. Horrex and R. Lapage, Discuss. Faraday Soc., 10, 234 (1951).